Shopping Online

Shopping Online

Mariah Haberman

no comment

Mariah Haberman (born January 13, 1988) is the host of Discover Wisconsin, a tourism TV show. She resides in Madison, Wisconsin.[citation needed]

Haberman’s hometown is Evansville, Wisconsin. She graduated from the University of Wisconsin Oshkosh in 2010 with degrees in journalism and advertising.

Haberman competed in beauty pageants through the Miss America organization, winning the title of Miss Wisconsin Central in 2012 and advancing to Miss Wisconsin, where she placed in the top 10. Her platform was “Preventing the Preventable – Drinking and Driving”.

After college, she worked for a Chicago marketing firm, then moved to a Madison firm. She was discovered at that firm by Discover Wisconsin; the syndicated show began as a tourism show for the state of Wisconsin in 1987 and Haberman was added as a co-host in 2013. Discover Wisconsin has an estimated audience of 600,000 in the Midwestern United States. She travels throughout Wisconsin taping segments for upcoming episodes. Haberman started the show’s blog.

Share This:

Johann Faber

no comment

Johann Faber (1478 – May 21, 1541) was a Catholic theologian known for his writings opposing the Protestant Reformation and the growing Anabaptist movement.

Johann Faber, the son of a blacksmith, was born in Leutkirch, Swabia and studied theology and canon law at Tübingen and Freiburg in the Breisgau region and was made doctor of sacred theology in Freiburg. He eventually became minister of Lindau, Vicar-General of Constance in 1517, Chaplain and confessor to King Ferdinand I of Austria in 1524, and Bishop of Vienna in 1530.

Like others of his time Faber was at first friendly with the Reformers, Melanchthon, Zwingli, and Oecolampadius, sympathizing with their efforts at reform and opposing certain abuses himself; but when he realized that neither dogma nor the Church itself was spared by the Reformers, he broke with them and became their most consistent opponent.

Faber wrote his first polemic against Martin Luther, “Opus adversus nova quaedam dogmata Martini Lutheri” in 1552. This was soon followed by his “Malleus Haereticorum, sex libris ad Hadrianum VI summum Pontificem” published in Cologne, in 1524, and Rome in 1569.

It is because of this latter work that he is sometimes called the “hammer of heretics”. He entered into public debate with Zwingli at Zurich – First Zurich Disputation, Jan. 1523 – and was a prominent figure in all the diets held to restore peace to the Church; as well as being one of the committee appointed to draw up a refutation of the Confession of Augsburg. On some points, such as the celibacy of the clergy, he was willing to recognize certain unfortunate conditions if an agreement could be reached to prevent similar conditions in the future, but no agreement was possible. He was sent by Ferdinand to Spain and then to Henry VIII in England to seek aid against the invading Turks; King Ferdinand also had him enlist the services of the University of Vienna to help combat the spread of the doctrines of Luther in Austria.

As Bishop of Vienna his zeal was unbounded; he protected his flock by frequent preaching and numerous writings, and he held regular conferences with his clergy. He founded twelve scholarships for boys who wished to become priests but did not have the means to realize their ambition.

He died in Vienna, 21 May 1541.

Johann Faber works (German and Latin) are homiletical and polemical in character. Besides those already mentioned he wrote treatises on faith and good works, on the Sacrifice of the Mass; an instruction and answer to Luther’s work against the King of England; a treatise against the more recent tenets of Luther; a comparison of the writings of Jan Hus and Luther; the power of the pope in the case of Luther; an answer to six articles of Zwingli; defence of Catholic belief against the chief Anabaptist, Balthasar of Friedberg; a book on the religion of the Russians; sermons on the misery of life and on the Blessed Sacrament; as well as sermons of consolation and courage whilst the Turks were besieging Vienna. His works in three folio volumes (Cologne, 1537–40) do not contain his polemical writings; these are found in “Opuscula quaedam Joannis Fabri, Episcopi Viennensis published in Leipzig, 1537.

While a canon of the cathedral of Basle Johann Faber formed a friendship with Erasmus that lasted throughout their lives; it was Erasmus who persuaded Faber to take up the study of the Fathers.

Share This:

Juhani Aho

no comment

Juhani Aho (Lapinlahti, 11 de septiembre de 1861-Helsinki, 8 de agosto de 1921), cuyo nombre verdadero fue Johannes Brofeldt hasta 1907, fue un escritor y periodista finlandés que cultivó la novela y la poesía. Su carrera como escritor duró cerca de cuarenta años.​

Nacido como Johannes Brofeldt, hijo del decano Henrik Gustaf Theodor Brofeldt y de Karolina Fredrika Emelie Snellman, Aho comenzó a escribir en sueco en el instituto, pero fue por influencia de Runeberg que más tarde escribió en finés.

En la universidad estuvo asociado al grupo literario de Arvid Järnefelt, y mantuvo correspondencia con la esposa de este, Elisabeth Järnefelt, quien le antería a escribir.

Aho comenzó como un autor de estilo realista en su primera novela Rautatie (literalmente del finés ‘Ferrocarril’), que se considera como uno de sus trabajos más importantes.

Más tarde se dedicó al neoromanticismo con las novelas Panu (1897) y Kevät ja takatalvi (en finés: La primavera y el final del invierno) (1906), siendo esta última una de sus obras más aclamadas, llevada a la ópera por Arne Merikanto y al cine en tres ocasiones, la más reciente de ellas en 1999, por Aki Kaurismäki.

Su novela Yksin (Solamente), publicada en 1890, es una historia de amor de carácter autobiográfico que refiere a la pasión de Aho por Aino Järnefeldt, quien al momento se hallaba secretamente comprometida con Jean Sibelius, con quien más tarde habría de casarse.

Los celos y el enojo que provocaron en Sibelius la publicación de la novela se olvidaron gradualmente, y más tarde en su vida, Aho y Sibelius fueron amigos cercanos, así como vecinos en Järvenpää, donde el compositor tenía una villa a la que había bautizado como “Ainola” (El reino de Aino).

Aho contrajo nupcias el 21 de septiembre de 1891 con la pintora Vendla Soldán-Brofeldt, conocida por el nombre de “Venny”.

Además de sus novelas, Aho escribió una serie de cuentos cortos de distintos estilos llamados Lastuja (en español Fichas). Sus temáticas varían desde las alegorías políticas hasta los retratos de la vida cotidiana.

La primera (y considerada la más famosa) de sus historias cortas es Siihen aikaan kun isä lampun osti (traducida al inglés como Cuando papá trajo a casa la lámpara), que retrata los efectos de la modernización en la vida de las personas en las regiones rurales. En la actualidad el título de la obra ha pasado a ser una expresión de carácter popular para referirse a la introducción de nuevas tecnologías.

Aho fue uno de los fundadores del Päivälehti, que sería el predecesor del Helsingin Sanomat (Noticias de Helsinki), el periódico de mayor tiraje en Finlandia.

En su momento, Aho fue el más conocido de los escritores de Finlandia en Europa, en parte quizás a las rápidas traducciones de las que sus obras fueron objeto.​ Para la década de 1890, sus libros se habían traducido a 10 idiomas.​

En su vejez soñó con el premio Nobel.​

en el Proyecto Gutenberg. (en finés)

Share This:

Real plane curve

no comment

In mathematics, a real plane curve is usually a real algebraic curve defined in the real projective plane.

Since the real number field is not algebraically closed, the geometry of even a plane curve C in the real projective plane is not a very easy topic. Assuming no singular points, the real points of C form a number of ovals, in other words submanifolds that are topologically circles. The real projective plane has a fundamental group that is a cyclic group with two elements. Such an oval may represent either group element; in other words we may or may not be able to contract it down in the plane. Taking out the line at infinity L, any oval that stays in the finite part of the affine plane will be contractible, and so represent the identity element of the fundamental group; the other type of oval must therefore intersect L.

There is still the question of how the various ovals are nested. This was the topic of Hilbert’s sixteenth problem. See Harnack’s curve theorem for a classical result.

Share This:

fodbold hat online | Billige Nike Fotball Jerseys online | Kelme Outlet

MCM Rucksack | Kelme Outlet | maje dresses outlet| maje dresses for sale

kelme paul frank outlet new balance outlet bogner outlet le coq sportif outlet online shopping shop online